

Honeywell Sensing and Control

CPC05GFC

Actual product appearance may vary.

Features

- Low Cost, Small Size
- Temperature Compensated
- Zero and Span Calibrated
- MilliVolt Output
- Differential, Gage and Absolute

Pressure

- Constant Voltage Excitation
- High Impedance Low Current

Description

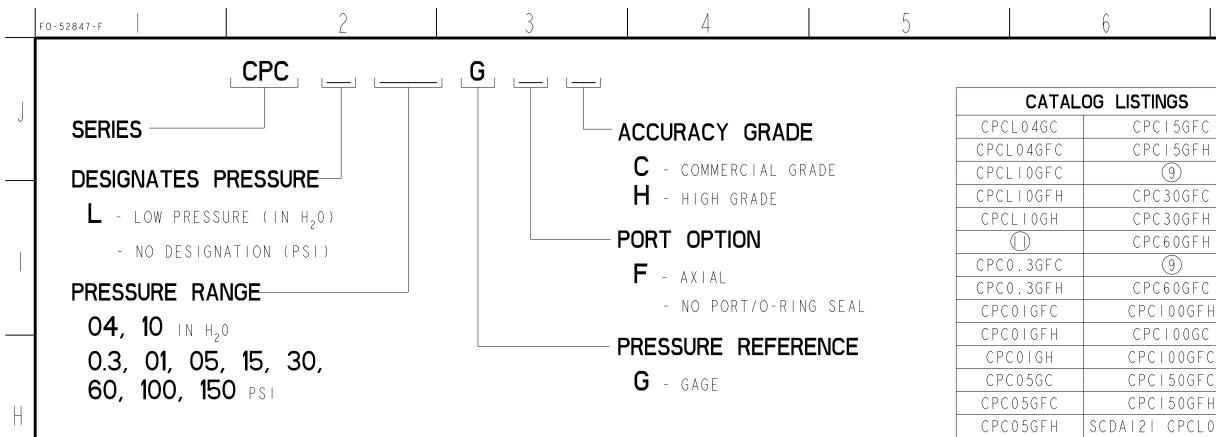
Potential Applications

Gage, Vacuum Gage; Signal

Commercial Grade

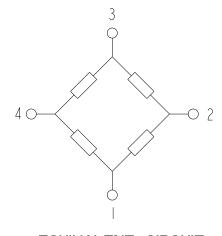
- Medical Applications
- Applications Requiring Small Size

Pressure Sensors: Measurement Type:


Conditioning: Unamplified; Pressure Range: ± 5.0 psi; Port Style: Barbed:

- Applications Requiring Vacuum
- Reference

The CPC and CPX Series sensors integrate silicon micromachined sensing technology, temperature compensation, and calibration in a complete family of low cost packages. This series offers the most cost-effective solution for design requirements. These piezoresistive pressure sensors use micromachined silicon chips mounted on a ceramic and protected with a plastic cap. Several tube arrangements with nylon housings are available for various pressure applications. On devices of 5 psi and above, the topside of the chip is protected against humidity by a Silgel coating. While the sensors are designed for use with noncorrosive, nonionic pressure media, they accommodate many gases that are used in medical applications. The CPC Series is designed for the lowest cost and smallest profile. The standard packages have only a plastic cap for OEM applications. The CPC...F accommodates pressure measurements in tube applications.


Product Specifications		
Measurement Type	Vacuum Gage, Gage	
Signal Conditioning	Unamplified	
Pressure Range	± 5.0 psi	
Maximum Overpressure	15.0 psi	
Supply Voltage	3.0 Vdc min., 12.0 Vdc typ., 16.0 Vdc max.	
Compensated	Yes	
Output Calibration	Yes	
Termination	PCB	
Port Style	Barbed	

Package Style	Honeywell DI-CPC
Typical Sensitivity	12 mV/psi
Full Scale Span	60 mV typ.
Null Offset	0 mV typ.
Null Shift over Temperature	± 1.0 mV typ.
Span Shift Over Temperature	± 2.0% span
Linearity, Hysteresis Error	± 0.25 % typ. ± 1 % max. Span
Input Resistance	5.0 kOhm min.
Output Resistance	3.0 kOhm typ.
Operating Temperature Range	-25 °C to 85 °C [-13 °F to 185 °F]
Compensated Temperature Range	0 °C to 70 °C [32 °F to 158 °F]
Storage Temperature Range	-40 °C to 125 °C [-40 °F to 257 °F]
Media Compatibility	Port 1: Dry gases only. Media must be compatible with epoxy- based adhesive. Port 2: Wetted materials. Media must be compatible with nylon housing, epoxy adhesive and silicon.
UNSPSC Code	411121
UNSPSC Commodity	411121 Transducers
Availability	Global
Series Name	CPC

$ \begin{array}{ c c c c c c c c } \hline \hline$	PRESSURE RANGE 04, 10 IN H ₂ 0 0.3, 01, 05, 15, 30, 60, 100, 150 PSI	 F - AXIAL - NO PORT/O-RING SEAL — PRESSURE REFERENCE G - GAGE 	CPC0.3GFC(9)CPC0.3GFHCPC60GFCCPC0IGFCCPC100GFHCPC0IGFHCPC100GCCPC0IGHCPC100GFCCPC05GCCPC150GFCCPC05GFCCPC150GFHCPC05GFHSCDA121CPC05GH	$\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$
Image: Interpretation Image: Interpretation <thimage: interpretation<="" th=""> Image: Interpretat</thimage:>	NULL OFFSET (O PSIG) (LO4 LISTING) NULL OFFSET (O PSIG), ALL LISTINGS EXCEPT LO4 4 IN H ₂ O (PI>P2) (LO4 LISTING)	C-GRADE H-GRADE MIN NOM MAX -2 0 2 -1 0 1 23 25 27	UNITSFULL SCALE PRESSURE PSIOVER PRESSURE PSImVmVmVdc4 IN H20	G
$\frac{CHARACTERISTICS}{EXCITAT SN VOLTAGE} \xrightarrow{NIV VOLTAGE} \frac{1}{3} \xrightarrow{1} \frac{1}{2} \xrightarrow{1} \frac{1}{16} \xrightarrow{1} \frac{1}{8} \xrightarrow{1} $	IO IN H ₂ O (PI>P2) (LIO LISTING) O.3 PSI SPAN (PI>P2) I PSI SPAN (PI>P2) 5 PSI SPAN (PI>P2) 15 PSI SPAN (PI>P2) 30 PSI SPAN (PI>P2) 60 PSI SPAN (PI>P2) 100 PSI SPAN (PI>P2) 150 PSI SPAN (PI>P2) 150 PSI SPAN (PI>P2) NULL SHIFT OVER TEMPERATURE (O-25, 25-70 °C) (2) (0) SPAN SHIFT OVER TEMPERATURE (O-25, 25-70 °C) (2) (0) COMBINED LINEARITY AND HYSTERESIS (3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mVdc IO IN H2O 5 mVdc 0.3 5 mVdc 1 5 mVdc 5 15 mVdc 15 45 mVdc 60 180 mVdc 150 250 mVdc 150 250 mVdc 150 250	F
 I - SPAN IS THE ALGEBRAIC DIFFERENCE BETWEEN THE OUPUT AT FULL SCALE PRESSURE AND THE OFFSET OUTPUT THE PRESSURE DISCALCULATED WITH RESPECT TO 25°C LINEARITY IS MEASURED AT 1/2 FULL SCALE PRESSURE USING BEST STRAIGHT LINE FIT THE DUPUT OF THE SENSOR IS PROPORTIONAL, RATIOMETRIC, TO THE EXCITATION VOLTAGE. THE EXCITATION MAY VARY BETWEEN 3 TO 16 Vdc. ALL SPECIFICATIONS WILL NOMINALLY BE CHANGED BY THE RATE O OF V_{ERCITATION}/12.0 Vdc LIMIT SOLDERING TO 315°C FOR LESS THAN TO SECONDS PIN I IS IDENTIFIED BY THE DOT ON THE HOUSING AS SHOWN ON THE VARIOUS DRAWINGS TO APPLY PRESSURE TO FORT INDICATED ON THE DRAWINGS SHOWN SENSORS ARE OPERATIONAL OVER VACUUM PRESSURE RANGE INPUT MEDIA RESTRICTED TO DRY GASES ONLY THE LO4 LISTING HAS A TEMPERATURE SHIFT RANGE FROM 0 TO 25°C AND 25 TO 50°C 	CHARACTERISTICSMINNOMMAXUNITSEXCITATION VOLTAGE31216VdcSUPPLY CURRENT3.5mAINPUT RESISTANCE5K-OHMSOUTPUT RESISTANCE3K-OHMSOPERATING TEMPERATURE-2585°CSTORAGE TEMPERATURE-40125°C		I-VEXCITATION2+OUTPUTSIGNAL3+VEXCITATION	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$
	 I - SPAN IS THE ALGEBRAIC DIFFERENCE BETWEEN THE OUPUT AND THE OFFSET OUTPUT TEMPERATURE ERROR IS CALCULATED WITH RESPECT TO LINEARITY IS MEASURED AT 1/2 FULL SCALE PRESSURE US THE OUTPUT OF THE SENSOR IS PROPORTIONAL, RATIOMETE THE EXCITATION MAY VARY BETWEEN 3 TO 16 Vdc. ALL SPECIFICATIONS WILL NOMINALLY BE CHANGED BY THE LIMIT SOLDERING TO 315°C FOR LESS THAN 10 SECOND PIN I IS IDENTIFIED BY THE DOT ON THE HOUSING A T - APPLY PRESSURE TO PORT INDICATED ON THE DRAWING SENSORS ARE OPERATIONAL OVER VACUUM PRESSURE RA 9 - INPUT MEDIA RESTRICTED TO DRY GASES ONLY 	25°C SING BEST STRAIGHT LINE FIT RIC, TO THE EXCITATION VOLTAGE. E RATIO OF V _{EXCITATION} /12.0 Vdc OS S SHOWN ON THE VARIOUS DRAWINGS S SHOWN NGE	SPECIFIED TOLERANCES ARE: CUSTOMARY NO PLACE X ±.040 ONE PLACE .X ±.030 TWO PLACE .XX ±.015 THREE PLACE .XXX ±.005 ANGLES ± RAW MATERIAL-COMMERCIAL STANDA THIRD ANGLE PROJECT	DRAWN TRF 02APR01 ±1 CHECK SAV 02APR01 ±0,4 THIS DRAWING COVERS A PROPRIETARY THIS DRAWING COVERS A PROPRIETARY TITLE ±0,15 THONEYWELL. THIS DRAWING COVERS A PROPRIETARY TITLE HONEYWELL. THIS DRAWING IS NOT TO BE COPIED OR USED WITHOUT TITLE ION DIMENSIONS ARE TO BE MET BEFORE REV SIZE DWG TYPE DRAWING NAME REV ION DIMENSIONS ARE TO BE MET BEFORE I C I CPC GAGE SERIES CHART 1 14

GENERAL OPERATING	ALL PRESSURES AND GRADES			ADES
CHARACTERISTICS	MIN	NOM	MAX	UNITS
EXCITATION VOLTAGE	3	12	16	Vdc
SUPPLY CURRENT			3.5	mА
INPUT RESISTANCE	5			K-OHMS
OUTPUT RESISTANCE		3		K-OHMS
OPERATING TEMPERATURE	- 2 5		85	°C
STORAGE TEMPERATURE	- 40		125	°C

0.3GFC(9)0.3GFHCPC60GFCC0IGFCCPC100GFHC0IGFHCPC100GC	VENT (P2)	
COIGHCPCI00GFCCO5GCCPCI50GFCC05GFCCPCI50GFHC05GFHSCDAI2I CPCL04GFCC05GHSS OTHERWISE STATED)		H
FULL SCALEOVER PRESSURE PSI 4 IN H_20 4 IN H_20 5 VER		G
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G HOUSING	F
30 90 60 180 100 250 150 250		E
PIN OUTI- V EXCITATION2+ OUTPUT SIGNAL3+ V EXCITATION4- OUTPUT SIGNAL	$\begin{array}{c c} & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$	D
		С
	GF HOUSING	В
UNLESS OTHERWISE SPECIFIED TOLERANCES ARE: CUSTOMARY NO PLACE X ±.040 ONE PLACE .X ±.030 TWO PLACE .XX ±.015 THREE PLACE .XXX ±.005	SI(mm) METRIC DRAWN TRF O2APROI ± I ± 0, 4 ± 0, 15 ± CHECK SAV O2APROI Honeywell Honeywell	
THREE PLACE .XXX ±.005 ANGLES ± RAW MATERIAL-COMMERCIAL STANDAN THIRD ANGLE PROJECTI	Image: Book of the permission of honeywell. Image: Book of the permission of honeywell. PRESSURE SENSOR ON DIMENSIONS ARE TO BE MET BEFORE PROTECTIVE COATINGS ARE APPLIED SIZE DWG TYPE DRAWING NAME REV ON DIMENSIONS ARE TO BE MET BEFORE PROTECTIVE COATINGS ARE APPLIED C I CPC GAGE SERIES CHART 1 14	A
6	3D PTC ASME Y14.5M-1994 SCALE 3:1 WEIGHT SHEET I OF I 7 8 9 10	

8

— . 39 — ►

→.35 →

⊸.30 →

| ()

- .03

REVDOCUMENTCHANGED BYCHECK140038162BS24MAR08ASD

. | | ---

-PI

NOTES	
NULS	

G

F

F

 $\left[\right)$

(

В

А